logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Inégalités par étude de fonction

Dans cette vidéo, Corentin commence par présenter un exercice qui consiste en une étude de fonction. Il demande aux spectateurs de montrer que la fonction f est dérivable sur R+ et de calculer sa dérivée. En étudiant le signe de cette dérivée, il montre que f atteint un minimum en 1. Ensuite, il aborde une série d'inégalités à démontrer. En utilisant les résultats des questions précédentes, il montre que pour tout x dans R+ , f(2x) est supérieur ou égal à f(2). Il utilise cette inégalité pour établir une deuxième inégalité impliquant des puissances. Enfin, Corentin démontre une dernière inégalité en se référant aux questions précédentes et en utilisant une équivalence. Il divise l'expression x + y^n par y^n (sous l'hypothèse que y^n est différent de zéro) pour se ramener à une inégalité déjà démontrée. Il conclut que pour tout couple (x,y) dans R+², x + y^n est inférieur ou égal à 2^n - 1 fois x^n + y^n. En résumé, cet exercice consiste en une étude de fonction suivie par la démonstration de plusieurs inégalités, en utilisant des résultats précédents et en faisant appel à la concentration et aux astuces des spectateurs.

Contenu lié