- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Dérivée n-ième
Bonjour à tous, c'est Corentin. Aujourd'hui, nous avons un exercice complexe qui demande beaucoup de calculs et de concentration. L'énoncé nous demande de dériver n fois la fonction f(x) = x²ln(1+x). Nous utilisons la formule de Leibniz pour cela. On identifie les fonctions g(x) = x² et h(x) = ln(1+x). On commence par dériver h(x) et trouvons que h'(x) = 2x, h''(x) = 2, et h''''(x) = 0 pour tout k ≥ 3. Pour g(x), nous trouvons que g'(x) = 1+x, g''(x) = -(1/(1+x)²), et g''''(x) = -((k-1)!(1+x)^(-k)). En utilisant la formule de Leibniz, nous trouvons que la dérivée n-ième de f(x) est égale à la somme de (kCn)(g^(k))(h^(n-k)) pour k allant de 0 à n. En factorisant et simplifiant, nous trouvons finalement que f^(n)(x) = 2x² + 2nx + n² - n(1/(1+x)^(n)). Cet exercice est complexe dans les calculs, mais la clé est de simplifier les expressions et de découper le travail. Il est important d'identifier la formule de Leibniz comme outil nécessaire pour résoudre cet exercice. La qualité de la paresse peut être utile ici, car elle nous pousse à simplifier les expressions et à rendre le travail plus facile.