logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

PGCD qui dépend de n

Dans cet exercice, on nous demande de déterminer l'ensemble des entiers naturels n pour lesquels le PGCD de 2n+3 et de n vaut 3. Pour résoudre cette question, on utilise l'algorithme d'Euclide en effectuant la division euclidienne de 2n+3 par n. On remarque que 2n+3 est déjà divible par n, puisque 2n+3 = 2(n+1). Ainsi, 3 est le PGCD des deux nombres. On peut donc en conclure que n est divisible par 3. Finalement, si le PGCD de 2n+3 et de n est égal à 3, cela signifie que n est un multiple de 3. Ensuite, on nous demande de déduire l'ensemble des entiers naturels n pour lesquels le PGCD de 2n+3 et de n vaut 1. On remarque que si n est un multiple de 3, le PGCD est forcément 3 et non 1. Ainsi, nous devons exclure les multiples de 3. Pour trouver les autres cas où le PGCD est 1, on considère que n peut s'écrire sous la forme 3k+2, où k est un entier naturel. On effectue alors la division euclidienne de 2n+3 par n. On trouve que le reste est 1. Le PGCD est donc égal à 1 lorsque n s'écrit sous la forme 3k+2. On peut aussi considérer le cas où n s'écrit sous la forme 3k+1. En effectuant la division euclidienne de 2n+3 par n, on trouve également un reste de 1. Donc, le PGCD est égal à 1 lorsque n s'écrit sous la forme 3k+1. Finalement, on peut conclure que si n n'est pas un multiple de 3, alors le PGCD de 2n+3 et de n vaut 1.

Contenu lié