logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

Décomposition en facteurs premiers

Dans cet exercice, nous cherchons les couples d'entiers (A, B) qui satisfont l'équation 3 * (21^A) = 14 * (9^B). Pour résoudre ce problème, nous utilisons la décomposition en facteurs premiers. En effet, afin d'identifier les puissances dans le produit, nous devons décomposer l'équation en facteurs premiers. La décomposition en facteurs premiers d'un nombre est unique, donc la décomposition de 3 * (21^A) est identique à celle de 14 * (9^B). Nous commençons par la partie gauche de l'équation, en décomposant 3 et en nous concentrant sur (21^A). Nous décomposons ainsi (21^A) en 3 * (7^A). Puis, nous utilisons les règles de calcul des puissances pour obtenir (3^A) * (7^A) à partir de (3 * (7^A)). En réorganisant le calcul de base, nous obtenons (3^(A+1)) * (7^A) pour 3 * (21^A). Ainsi, nous avons décomposé 3 * (21^A) de manière unique en (3^(A+1)) * (7^A). Nous faisons la même décomposition pour la partie droite de l'équation. En décomposant 14, nous obtenons 2 * 7. Et en décomposant 9, nous obtenons 3^2. Utilisant ensuite la règle de calcul des puissances, nous obtenons 2 * (3^(2B)) * 7^B pour 14 * (9^B). Pour que les deux produits soient identiques, nous devons trouver des valeurs de A et B qui satisfont cette équation. Cependant, le problème est que le facteur 2 apparaît dans la décomposition de 14 * (9^B), mais n'apparaît pas dans la décomposition de 3 * (21^A). Étant donné qu'A et B concernent le 3 (éventuellement le 7 aussi), mais pas le 2, nous ne pouvons pas compenser le facteur 2 avec A ou B. Par conséquent, il n'y a aucune valeur de A et B qui vérifie cette équation. Ainsi, nous concluons que l'équation n'a pas de solution.

Contenu lié