- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Démo infinité des premiers
Dans cet exercice, nous allons montrer qu'il existe une infinité de nombres premiers. Pour cela, nous supposons que l'ensemble des nombres premiers est fini, et nous allons parvenir à une contradiction.
Nous commençons par noter P comme étant l'ensemble des nombres premiers, et nous supposons qu'il contient N nombres, notés P1, P2, P3... jusqu'à PN.
Nous construisons ensuite un nouveau nombre appelé P étoile, qui est le produit de tous les nombres premiers de l'ensemble P, auquel nous ajoutons 1.
La première étape consiste à montrer que pour chaque indice i appartenant à N, le nombre Pi ne divise pas P étoile. Nous utilisons une démonstration par l'absurde et supposons qu'il existe un indice i pour lequel Pi divise P étoile. Cependant, P étoile est congru à 1 modulo Pi, ce qui contredit le fait que Pi divise P étoile. Ainsi, aucun nombre premier de l'ensemble P ne divise P étoile.
Ensuite, nous montrons que P étoile est strictement plus grand que le plus grand des nombres premiers de l'ensemble P. Par conséquent, P étoile ne peut pas être un nombre premier.
Cependant, selon le critère d'arrêt, il existe un nombre premier Pi dans l'ensemble P qui divise P étoile. Cela contredit ce que nous avons prouvé dans la première étape, où nous avons montré qu'aucun nombre premier de l'ensemble P ne divise P étoile.
Cette contradiction prouve que notre supposition selon laquelle l'ensemble des nombres premiers est fini est fausse. Par conséquent, il existe une infinité de nombres premiers.
Cela conclut l'exercice.