logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Démo infinité des premiers

Dans cet exercice, nous allons montrer qu'il existe une infinité de nombres premiers. Pour cela, nous supposons que l'ensemble des nombres premiers est fini, et nous allons parvenir à une contradiction. Nous commençons par noter P comme étant l'ensemble des nombres premiers, et nous supposons qu'il contient N nombres, notés P1, P2, P3... jusqu'à PN. Nous construisons ensuite un nouveau nombre appelé P étoile, qui est le produit de tous les nombres premiers de l'ensemble P, auquel nous ajoutons 1. La première étape consiste à montrer que pour chaque indice i appartenant à N, le nombre Pi ne divise pas P étoile. Nous utilisons une démonstration par l'absurde et supposons qu'il existe un indice i pour lequel Pi divise P étoile. Cependant, P étoile est congru à 1 modulo Pi, ce qui contredit le fait que Pi divise P étoile. Ainsi, aucun nombre premier de l'ensemble P ne divise P étoile. Ensuite, nous montrons que P étoile est strictement plus grand que le plus grand des nombres premiers de l'ensemble P. Par conséquent, P étoile ne peut pas être un nombre premier. Cependant, selon le critère d'arrêt, il existe un nombre premier Pi dans l'ensemble P qui divise P étoile. Cela contredit ce que nous avons prouvé dans la première étape, où nous avons montré qu'aucun nombre premier de l'ensemble P ne divise P étoile. Cette contradiction prouve que notre supposition selon laquelle l'ensemble des nombres premiers est fini est fausse. Par conséquent, il existe une infinité de nombres premiers. Cela conclut l'exercice.

Contenu lié