logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Critère d'arrêt : n est premier ?

Dans cet exercice, nous utilisons le critère d'arrêt pour déterminer si un nombre est premier ou non. Le critère d'arrêt stipule que si un nombre n'est pas premier, il a un diviseur premier P compris entre 2 et la racine carrée de ce nombre. Nous n'avons pas besoin de tester tous les nombres premiers jusqu'au nombre que nous voulons tester pour savoir s'ils le divisent ou non. Nous devons simplement les tester jusqu'à la racine carrée de n. Dans cet exercice, nous calculons la racine carrée de 349, ce qui donne environ 18,7. Par conséquent, nous devons tester tous les nombres premiers inférieurs ou égaux à 18,7. Nous nous arrêtons à 17, ce qui signifie que nous devons tester si 2, 3, 5, 7, 11, 13 et 17 divisent 349. Ces nombres premiers doivent être connus, puisqu'ils sont utilisés régulièrement dans les exercices. En testant ces nombres, nous constatons rapidement qu'aucun d'entre eux ne divise 349. Par conséquent, nous concluons que 349 est un nombre premier. Cela conclut l'exercice sur l'utilisation du critère d'arrêt.

Contenu lié