- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Déterminer des ensembles
Dans ce cours, on apprend la première méthode de dénombrement. On distingue deux concepts importants : les ensembles et les listes. Un ensemble est comme un sac qui contient différentes choses, sans ordre particulier. Une liste, quant à elle, est une collection d'éléments organisés selon un ordre spécifique. Il faut faire attention à ne pas confondre les deux.
Dans les ensembles, l'ordre des éléments ne compte pas. Par exemple, le sac contenant AB est équivalent au sac contenant BA. En revanche, dans les listes, chaque élément a un numéro d'ordre spécifique (par exemple, les coordonnées 1-2 ne sont pas les mêmes que les coordonnées 2-1).
Lorsqu'on travaille avec des ensembles, on utilise des opérations combinatoires, qui seront abordées dans les prochaines méthodes. Par exemple, on peut prendre l'union (notée U) de deux ensembles, ce qui donne un nouvel ensemble contenant tous les éléments des deux ensembles (sans les répéter). On peut également prendre l'intersection (notée ∩), qui donne les éléments communs aux deux ensembles.
On introduit également le concept de produit cartésien, qui consiste à former des couples d'éléments provenant de deux ensembles différents. Par exemple, si on prend le produit cartésien de deux ensembles E et F, on obtient un ensemble de couples, où le premier élément du couple provient de E et le deuxième élément provient de F.
Ensuite, on explore les paires, qui sont des ensembles de deux éléments. On peut former toutes les paires possibles à partir d'un ensemble donné. Il faut cependant faire attention à ne pas compter deux fois les paires qui contiennent les mêmes éléments (par exemple, la paire HE est la même que EH).
En résumé, il est important de distinguer entre ensembles et listes, car cela influence le dénombrement des possibilités. Les opérations sur les ensembles (union, intersection) et le produit cartésien permettent de combiner et de comparer des ensembles. Les paires peuvent être formées à partir d'un ensemble donné en prenant toutes les combinaisons de deux éléments.