logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
      Terminale
    • Concours et examens UK
      • Oxford Imperial MAT
      • Cambridge
    • Concours et examens US
    • Concours et examens Français
    • Bac et examens étrangers
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
      Terminale
    • Concours et examens UK
      • Oxford Imperial MAT
      • Cambridge
    • Concours et examens US
    • Concours et examens Français
    • Bac et examens étrangers

1, et 2, et… 4 valeurs absolues !

Dans cette vidéo, nous avons un exercice de mathématiques qui consiste à trouver toutes les solutions d'une équation. L'exercice se décompose en plusieurs étapes. Tout d'abord, nous devons comprendre qu'il s'agit d'un exercice où la précision et l'efficacité sont requises, plutôt que la créativité. Ensuite, nous différencions les différentes valeurs absolues selon les intervalles donnés. Nous combinons ensuite ces valeurs absolues pour obtenir une expression pour f(x). Ensuite, nous essayons de résoudre l'équation f(2x) = x + 2 sur chaque intervalle en vérifiant que les solutions obtenues sont valides pour chaque intervalle. L'équation a une solution valide sur l'intervalle -∞ à -1 et sur l'intervalle 1 à +∞. En revanche, il n'y a pas de solution valide sur les intervalles -1 à 0 et 0 à 1. Ainsi, la solution de l'équation est l'ensemble des réels entre 2 et +∞, inclus, ainsi que la solution unique -2. La vidéo conclut en encourageant les spectateurs à poser des questions et à partager d'autres solutions élégantes.

Contenu lié