- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives & Équations Différentielles
- Calcul Intégral
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives & Équations Différentielles
- Calcul Intégral
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Primitives : condition initiale
Dans cet exercice, il s'agit de vérifier qu'une fonction composée est bien une primitive d'une fonction donnée, puis d'en déduire l'ensemble des primitives de cette fonction. Pour cela, on regarde l'ensemble de définition de dérivabilité, et on dérive la fonction composée pour vérifier qu'elle retombe bien sur la fonction donnée. On précise qu'il y a une infinité de primitives possibles définies à une constante additive près. Ensuite, on cherche à déterminer l'unique primitive qui prend une valeur fixe donnée, appelée condition initiale. L'ensemble des primitives de cette fonction est de la forme F(x) + ln(x) + K où K est une constante réelle, et la primitive qui s'annule à une valeur donnée est de la forme F(x) + ln(x) - 1 - E³. Cet exercice introduit les méthodes sur les primitives, utiles notamment pour la résolution des équations différentielles.