logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives & Équations Différentielles
      • Calcul Intégral
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives & Équations Différentielles
      • Calcul Intégral
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Transformer puis primitiver

Apprenez comment trouver une primitive à partir d'une fonction sur laquelle a priori on ne la trouve pas. Pour cela, vous pouvez utiliser la méthode d'identification sous la forme u prime fois u, ou la décomposition en éléments simples si vous avez une fonction rationnelle. Par exemple, pour la fonction f de x qui a la 3x² plus 2 facteur de x au cube plus 2x, vous pouvez trouver la primitive en identifiant u prime qui est égal à 3x² plus 2, et vous obtenez 1 demi de x au cube plus 2x au carré plus une constante. Pour la fonction rationnelle g qui est aussi sous forme d'un produit au dénominateur, vous pouvez utiliser la décomposition en éléments simples en trouvant les réels a et b tels que g de x soit égal à a sur x plus b sur x-1. Dans ce cas, vous pouvez calculer la primitive de chacune d'entre elles, et identifier facilement la primitive de g qui est ln de x moins 1 plus moins ln de x. Gardez à l'esprit que selon l'intervalle de définition, une fonction peut avoir des primitives qui ont une expression différente, comme dans le cas de la fonction 1 sur x qui a des primitives différentes sur r étoile moins et sur r étoile plus.

Contenu lié