- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives & Équations Différentielles
- Calcul Intégral
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives & Équations Différentielles
- Calcul Intégral
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Aire entre 2 courbes
Dans cette vidéo, on apprend comment calculer l'air entre deux courbes en utilisant le théorème suivant : Soit f et g, deux fonctions continues sur un intervalle i, tel que f2x est toujours plus petite que g2x. L'air exprimé en unité d'air du domaine, compris entre x égal a et x égal b, donc les bords de l'intervalle, et la courbe de f et la courbe de g, vaut l'intégrale entre a et b de g2x moins f2x. Pour illustrer cette propriété, l'auteur utilise deux fonctions f en rouge et g en bleu et montre que l'air entre les deux courbes est égal à l'intégrale de f moins g lorsque f est au-dessus de g et à l'intégrale de g moins f lorsque g est au-dessus de f.