logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
      • Dénombrement
      • Variables aléatoires
      • Concentration et Loi des Grands Nombres
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
      • Dénombrement
      • Variables aléatoires
      • Concentration et Loi des Grands Nombres
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

Seuil de probabilité

Ce sous-chapitre traite des intervalles de fluctuation en relation avec les variables aléatoires et la loi binomiale. Il est essentiel de modéliser des événements et des probabilités dans la vie réelle, et cette modélisation peut être vérifiée avec des intervalles de fluctuation. Grâce à ces tests, on peut déterminer si une modélisation est effectivement précise ou non. À titre d'exemple, en supposant que x est le nombre de spectateurs, s'il y a moins de 10 personnes, une pièce de théâtre ne sera pas jouée. En utilisant la méthode des intervalles de fluctuation et des informations pertinentes sur les paramètres de la loi de probabilité et le seuil, on peut déterminer si la troupe est susceptible de jouer avec un intervalle de confiance de plus de 95%. En fin de compte, les intervalles de fluctuation peuvent être utilisés pour évaluer les modèles probabilistes dans la vie réelle.

Contenu lié