- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Dénombrement
- Variables aléatoires
- Concentration et Loi des Grands Nombres
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Dénombrement
- Variables aléatoires
- Concentration et Loi des Grands Nombres
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Classique : efficacité d'un médicament ?
L'exercice consiste à calculer l'intervalle de fluctuation centré au seuil de 95% pour un médicament qui est efficace à 90% en prenant 400 patients malades. La loi G suit une loi binomiale de paramètres n égale 400 et p égale 0,9. On utilise la méthode de tâtonnement pour trouver la plus petite valeur de G telle que p de G inférieure à K, soit plus petite que 0,025 et la plus petite valeur de K telle que p de G inférieure à K soit inférieure à 0,975. On trouve que 95% de chance que le nombre de patients guéris soit situé entre 87% et 92,5%. L'hypothèse est donc validée et la borne inférieure de l'intervalle est de 87%. C'est un exercice typique de calcul d'intervalle de fluctuation pour l'efficacité d'un médicament.