- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives & Équations Différentielles
- Calcul Intégral
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives & Équations Différentielles
- Calcul Intégral
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Suite-fraction
La vidéo parle de la convergence d'une suite donnée par vn = 6n+3 / (n+1). Pour étudier les variations, le professeur utilise le critère de croissance en comparant vn+1 / vn à 1. Après des calculs, il montre que ce ratio est strictement supérieur à 1, ce qui implique que la suite vn est strictement croissante. Ensuite, il montre que la suite est majorée par 6 en montrant que vn+3 égale à 6 pour tout n. Enfin, il applique le théorème de convergence monotone pour conclure que la suite vn converge. Le professeur propose également une méthode alternative où il simplifie l'expression de vn en écrivant vn = 6(n+1) - 3 / (n+1), permettant ainsi d'étudier les variations plus facilement. Il conclut en disant que la limite de la suite vn est égale à 6.