- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives & Équations Différentielles
- Calcul Intégral
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives & Équations Différentielles
- Calcul Intégral
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Téléscopage !
Le cours traite de la détermination de limites de suites définies comme des sommes de termes d'autres suites. Le premier exercice consiste à déterminer la limite de la suite Un, qui est 1/n, qui tend vers 0. Ensuite, l'exercice suivant montre que pour toutes les n appartenant à N, Un égale à 1/(n-1) - 1/n+1. La difficulté de cet exercice est de ne pas recopier la réponse et de partir de l'équation donnée pour démontrer qu'elle est égale à Un. Le troisième exercice consiste à calculer la somme de la suite. En utilisant la question précédente, on peut simplifier l'expression de Un en une somme télescopique, où les termes successifs se dégagent mutuellement, laissant seulement Un et Un+1. Finalement, on obtient que la somme tend vers 1.