- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives & Équations Différentielles
- Calcul Intégral
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives & Équations Différentielles
- Calcul Intégral
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Primitive et réécriture
Ce cours concerne l'analyse d'une fonction définie par f2x = x + log(4) + 2/(e2x + 1). L'objectif est de trouver une expression de primitive facile à détecter.
Tout d'abord, on étudie les limites de la fonction. La limite lorsque x tend vers plus l'infini est x, car le reste de l'expression tend vers 0. La limite lorsque x tend vers moins l'infini est 2, car e2x tend vers 0 puisque x tend vers moins l'infini.
Ensuite, on examine le sens de variation de la fonction. Comme f est dérivable sur R et que la dérivée est toujours positive, cela signifie que la fonction est croissante.
Enfin, on trouve les primitives de la fonction. La primitive de x est x²/2. La primitive de 2 + log(4) est (2 + log(4))x. En utilisant une intégration par substitution, on obtient la primitive de -2e2x/(e2x+1) comme étant -log(e2x+1). Donc, l'ensemble des primitives possibles est x²/2 + (2 + log(4))x - log(e2x+1) + K, où K est une constante réelle.
En résumé, on cherche une primitive de la fonction f2x = x + log(4) + 2/(e2x + 1). On étudie les limites, le sens de variation et les primitives de la fonction, et on obtient l'ensemble des primitives possibles.