- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Généralités et Fonctions de Référence
- Variations et Extremums
- Signe et Inéquations
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Généralités et Fonctions de Référence
- Variations et Extremums
- Signe et Inéquations
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Définition d'un minimum
Dans cet exercice, nous apprenons à déterminer le minimum d'une fonction sur R. Pour ce faire, nous devons remarquer que la forme développée de f(x) est équivalente à sa forme canonique x-4²-13. Ensuite, il faut minorer f en trouvant le plus grand k tel que f(x) est supérieur ou égal à k. Nous savons que x-4² est positif, donc f(x) est supérieur ou égal à -13. Cependant, le plus grand des minorants est le minimum de f, qui est égal à -13 et atteint pour x égal à 4.