Tous les sujets
Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSIPhysique-Chimie
Corrigés de BAC
Révisions Maths lycée
Prépa Examens
Tous les sujets
Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSIPhysique-Chimie
Corrigés de BAC
Révisions Maths lycée
Prépa Examens
Raisonner par contraposée
Dans ce cours sur la démonstration par la contraposée, Paul explique comment démontrer une proposition en utilisant sa contraposée qui consiste à inverser la relation et les termes. Pour illustrer cela, il prend l'exemple de la proposition suivante: si n² est impair, alors n est impair. En utilisant la contraposée, il dit que si n est pair, alors n² est pair. Ensuite, il démontre cette contraposée en expliquant qu'un nombre pair peut être représenté comme 2p et donc n² sera égal à 2 facteurs de 2p², ce qui est pair. Il conclut en expliquant que quand la contraposée est plus facile à démontrer, on peut l'utiliser pour démontrer la proposition initiale.