- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Changement de variables 2
Dans cette vidéo, Mathis de Studio aborde les changements de variables en calculant des intégrales. Pour ce faire, il utilise la démarche type de l'intégrale de f de phi de t phi prime de t dt qui est égale à l'intégrale de f de u du. Il pose plusieurs variables, telles que x qui vaut exponentielle t pour l'intégrale de 0 à 1 de 1 sur 1 plus exponentielle t dt, et t qui vaut sinus de θ pour l'intégrale de moins 1 à 1 de racine de 1 moins t² dt. Il vérifie les hypothèses du changement de variable pour chaque cas et utilise des méthodes mathématiques pour résoudre les intégrales, telles que la décomposition en éléments simples et la formule trigonométrique pour calculer l'intégrale de cos² θ dt. Il rappelle également l'importance de s'adapter à chaque cas et de suivre la dynamique des changements de variables. Au final, il obtient les résultats suivants : l'intégrale de 0 à 1 de 1 sur 1 plus exponentielle t dt est égale à 1 plus ln de 2 moins ln de e plus 1, l'intégrale de 1 à 3 de racine de t sur 1 plus t dt est égale à racine de 3 moins 1 moins pi sur 12, et l'intégrale de moins 1 à 1 de racine de 1 moins t² dt est égale à pi sur 2.