- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Décomposition en éléments simples
Le cours traite de la détermination de primitives de fractions polynomiales en utilisant deux méthodes différentes en fonction du discriminant du dénominateur. Si le discriminant est strictement négatif, la mise sous forme canonique est utilisée pour résoudre le problème, tandis que si le discriminant est supérieur ou égal à zéro, la méthode de décomposition en éléments simples est utilisée. Plus précisément, l'intégrale de référence de 1 sur x² plus a² est utile pour résoudre certaines primitives. Pour x² plus 4x plus 5, la forme canonique est utilisée pour obtenir la primitive. Pour 1 sur 1 moins x², la décomposition en éléments simples est utilisée pour obtenir la primitive. Enfin, le cours donne un exemple de ce qu'il faut faire si le dénominateur contient à la fois des termes linéaires et quadratiques. Les deux méthodes aboutissent à des primitives différentes, sous forme de RLN ou d'arc-tangente.