- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Intgérales de Wallis
Dans cette vidéo, on aborde le calcul des intégrales de Wallis. Pour commencer, on pose Wn, qui est l'intégrale de 0 à pi/2 de sin(nx) dx. On nous demande tout d'abord de calculer W0 et W1. En appliquant la formule, on trouve que W0 = pi/2 et W1 = 1. Ensuite, on nous demande de trouver une relation entre Wn et Wn+2. En utilisant l'intégration par parties, on dérive sin(n+1)x pour obtenir sin(nx). Après avoir simplifié, on obtient Wn+2 = (n+1)/(n+2) * Wn. Enfin, on nous demande de déduire W2n et W2n+1 en fonction de n. En remontant les rangs, on obtient que W2n = (2^n * (n!)^2 * pi) / (2n+1)!. De même, W2n+1 = (2^n * (n!)^2) / (2n+1)!. Cette méthode, bien que complexe, est importante à connaître pour les intégrales de Wallis.