logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
      • Logique et ensembles
      • Calcul algébrique et trigonométrie
      • Complexes
      • Fonctions d'une variable réelle (0)
      • Primitives et équations différentielles
      • Nombres réels et suites numériques
      • Fonctions : Limites et continuité (1)
      • Fonctions : dérivabilité (2)
      • Fonctions : convexité (3)
      • Analyse Asymptotique
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
      • Logique et ensembles
      • Calcul algébrique et trigonométrie
      • Complexes
      • Fonctions d'une variable réelle (0)
      • Primitives et équations différentielles
      • Nombres réels et suites numériques
      • Fonctions : Limites et continuité (1)
      • Fonctions : dérivabilité (2)
      • Fonctions : convexité (3)
      • Analyse Asymptotique
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Variation de la constante

Dans cette vidéo, Maty de studio aborde la résolution des équations différentielles linéaires d'ordre 1 en utilisant une technique particulière : la méthode de variation de la constante. Il commence par résoudre une équation donnée : y'y = 1/(1+exp(x)). Il rappelle rapidement comment trouver la solution homogène de l'équation différentielle homogène associée, qui est yh = x*exp(-x). Ensuite, pour trouver une solution particulière, il utilise la méthode de variation de la constante. Il pose une fonction A(x) qui varie et multiplie cette fonction par exp(-x), comme c'était posé initialement. En dérivant cette fonction, il obtient A'(x) = exp(x)/(1+exp(x)). En intégrant cette équation, il trouve que A(x) = ln(1+exp(x)) + C, où C est une constante d'intégration. Comme il a précisé qu'il fallait multiplier par exp(-x) pour obtenir la solution particulière, la solution trouvée est : ysp = exp(-x) * ln(1+exp(x)). La solution générale de l'équation différentielle est donc : y(x) = yh + ysp = x*exp(-x) + exp(-x) * ln(1+exp(x)). Ensuite, il résout une autre équation donnée : 1+x*y' + y = 1 + ln(1+x)/(1+∞). Il commence par trouver la solution homogène de l'équation différentielle homogène associée, qui est yh = exp(ln(1+x)) = 1+x. Ensuite, pour trouver une solution particulière, il utilise encore la méthode de variation de la constante. Il pose une fonction A(x) qui varie et multiplie cette fonction par (1+x), comme c'était posé initialement. En dérivant cette fonction, il obtient A'(x) = ln(1+x). En intégrant cette équation, il trouve que A(x) = (1+x) * ln(1+x) - x. Comme il a précisé qu'il fallait diviser par (1+x) pour obtenir la solution particulière, la solution trouvée est : ysp = ln(1+x). La solution générale de l'équation différentielle est donc : y(x) = yh + ysp = 1+x + ln(1+x). Il résout ensuite deux autres équations, en utilisant la même méthode de variation de la constante. Les solutions trouvées sont respectivement : y(x) = x^2/(1+x) et y(x) = exp(x^2 + x)/(1+x). Enfin, il conclut en expliquant que la méthode de variation de la constante est une méthode importante pour résoudre les équations différentielles d'ordre 1, car elle permet de trouver une solution particulière à tous les coups. Il souligne l'importance de multiplier la solution particulière par le facteur exponentiel correspondant. Il encourage ensuite les spectateurs à résoudre n'importe quelle équation différentielle d'ordre 1 en utilisant cette méthode.

Contenu lié