- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Complexes : vision algébrique
- Complexes : vision géométrique
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Complexes : vision algébrique
- Complexes : vision géométrique
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Affixe, vecteurs et complexes
Le nombre complexe peut être associé à un point du plan, où l'on utilise la partie réelle et la partie imaginaire comme coordonnées. On peut également associer un vecteur à un nombre complexe, et inversement. Dans un exemple pratique, on utilise les affixes des points A, B, et C pour trouver le point D tel que ABCD soit un parallélogramme. On utilise la propriété qui dit que AB est égal à DC si et seulement si les affixes respectives de ces deux vecteurs sont égales. Cette méthode est équivalente à l'utilisation de vecteurs.