logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
      • Logique et ensembles
      • Calcul algébrique et trigonométrie
      • Complexes
      • Fonctions d'une variable réelle (0)
      • Primitives et équations différentielles
      • Nombres réels et suites numériques
      • Fonctions : Limites et continuité (1)
      • Fonctions : dérivabilité (2)
      • Fonctions : convexité (3)
      • Analyse Asymptotique
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
      • Logique et ensembles
      • Calcul algébrique et trigonométrie
      • Complexes
      • Fonctions d'une variable réelle (0)
      • Primitives et équations différentielles
      • Nombres réels et suites numériques
      • Fonctions : Limites et continuité (1)
      • Fonctions : dérivabilité (2)
      • Fonctions : convexité (3)
      • Analyse Asymptotique
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Inégalité de Cauchy Schwarz

Dans cette vidéo, Mathis de Studio démontre deux inégalités classiques pour n antinaturel non nul et deux suites de réels, a_i et b_i. Il montre que, pour la somme pour k allant de 1 à n des a_k b_k, la valeur absolue est inférieure ou égale à la somme pour k allant de 1 à n des valeurs absolues de a_k valeurs absolues b_k, ce qui est inférieur ou égal à la racine carrée de la somme pour k allant de 1 à n des a_k², multipliée par la racine carrée de la somme pour k allant de 1 à n des b_k². Il utilise un polynôme f(x) pour montrer que, dans les deux cas examinés, l'inégalité est vérifiée. En conclusion, la valeur absolue de la somme des a_k b_k est inférieure ou égale à la somme des valeurs absolues de a_k valeurs absolues b_k, qui est inférieure ou égale à la racine carrée de la somme des a_k², multipliée par la racine carrée de la somme pour k allant de 1 à n des b_k².

Contenu lié