- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Sommes doubles
Dans cette vidéo, Mathis de Studio enseigne comment calculer des sommes doubles. Pour toute somme double, la méthode consiste à la dédoubler en deux sommes simples, c’est-à-dire à fixer un des deux indices pour permettre de calculer la somme sur un seul indice au lieu de deux. Pour la première somme donnée, il s’agit de la somme pour i et j de 1 à n de i + j au carré. En dédoublant cette somme, on obtient deux sommes simples, la première pour i allant de 1 à n des sommes pour j allant de 1 à n de 1 + j au carré, et la deuxième pour j allant de 1 à n des sommes pour i allant de 1 à n de 1 + i au carré. En utilisant les formules classiques de somme des carrés et de somme des entiers, on obtient que la somme initiale est égale à n*(n+1)*(7n+5)/6. Pour la deuxième somme donnée, il s’agit de la somme pour i plus grand que i mais plus petit que j strictement, et j qui est plus petit que n, des i fois j. En fixant j et en utilisant une formule classique, on obtient que cette somme est égale à n*(n+1)*(3n²-n-2)/24.Pour la troisième somme donnée, il s’agit de la somme pour i et j de 1 à n du minimum de i et j. En séparant cette somme en deux sommes, une pour laquelle j est plus grand que i et l’autre pour laquelle j est plus petit que i, on obtient que cette somme est égale à n*(n+1)*(2n+1)/6.Enfin, pour la quatrième somme donnée, il s’agit de la somme pour i plus grand que 1, plus petit que j, plus petit que n, des i divises par j. En sortant j en premier, on peut obtenir que cette somme est égale à n*(n+3)/4.