logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

La Guerre des étoiles

Dans cet exercice de physique sur la cinématique, un véhicule suit une trajectoire sinusoidale entre des cheminées d'une usine. La vitesse du véhicule est constante selon x et il met 12 secondes pour revenir sur l'axe après la sixième cheminée. L'amplitude de la sinusoïde doit être déterminée pour que l'accélération reste inférieure à 10G en valeur absolue. Pour modéliser le mouvement sinusoidal, l'utilisation d'un sinus ou d'un cosinus est avantageuse en fonction du point de départ. La période du sinus est de 2 pi et la hauteur est donnée par la formule Y0 sinus de pi X sur L. En isolant le temps dans l'équation de trajectoire et en dérivant une fois et deux fois, l'accélération selon y peut être calculée. Pour limiter l'accélération en dessous de 10G, l'amplitude de la sinusoïde doit être inférieure à 40 mètres. L'exercice montre également comment convertir les mètres par seconde en kilomètres par heure.

Contenu lié