logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
      Terminale
    • Bac Maths
      • BAC 2022
      • Géométrie
      • Probabilités
      • BAC 2021
    • Bac Physique-Chimie
    • MPSI/PCSI
    • Bac Maths
    • Bac Physique-Chimie
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
      Terminale
    • Bac Maths
      • BAC 2022
      • Géométrie
      • Probabilités
      • BAC 2021
    • Bac Physique-Chimie
    • MPSI/PCSI
    • Bac Maths
    • Bac Physique-Chimie
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Fonctions - Métropole 2022

Cet exercice concerne les fonctions logarithmiques et se compose de plusieurs questions. Dans la première question, on nous donne une équation avec la fonction logarithmique et on nous demande combien de solutions elle a. En résolvant l'équation, on trouve deux solutions, donc la réponse est "exactement une solution". Dans la deuxième question, on nous donne une fonction et on nous demande si elle est convexe ou concave. En utilisant la dérivée seconde de la fonction, on trouve qu'elle a un point d'inflexion, donc la réponse est "elle a un point d'inflexion". Dans la troisième question, on nous donne une fonction et on nous demande de trouver une primitive de cette fonction. En utilisant une méthode rapide, on identifie une forme similaire à celle de la dérivée du logarithme, et on trouve que la primitive est "-1,5 log de (1 - x carré)". Dans la quatrième question, on nous donne une fonction et on nous demande dans quel intervalle elle est strictement positive. En étudiant le signe du polynôme correspondant, on trouve que la fonction est strictement positive dans l'intervalle (-3, 2), donc la réponse est "x appartient à (-3, 2)". Dans la cinquième question, on nous donne une fonction et on nous demande l'équation de sa tangente en un point donné. En utilisant la dérivée de la fonction et les coordonnées du point, on trouve que l'équation de la tangente est "2x - 1". Enfin, dans la dernière question, on nous donne une inégalité avec des logarithmes et on nous demande quel ensemble de solutions est correct. En résolvant l'inégalité, on trouve que les valeurs de x doivent être dans l'intervalle (-∞, -2) U (1, +∞), donc la réponse est "x ∈ (-∞, -2) U (1, +∞)". Voilà pour ce résumé SEO-friendly de l'exercice sur les fonctions logarithmiques.

Contenu lié