- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Divisibilité et division euclidienne
- Congruences
- PGCD et algorithme d’Euclide
- Nombres premiers
- Prépare tes écrits
- Loi usuelles, groupes
- Anneaux corps
- 11- Prépare tes écrits
- Opérations sur les matrices
- Puissance de matrices
- Systèmes linéaires et Inverses de matrices
- 12- Prépare tes écrits
- Espaces vectoriels et sous-espaces vectoriels
- Famille de vecteurs
- Somme d'espaces vectoriels
- Matrices applications linéaires
- Changement de base, matrices de passages
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Terminale
Première
Seconde
MPSI/PCSI
2BAC SM Maroc
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Divisibilité et division euclidienne
- Congruences
- PGCD et algorithme d’Euclide
- Nombres premiers
- Prépare tes écrits
- Loi usuelles, groupes
- Anneaux corps
- 11- Prépare tes écrits
- Opérations sur les matrices
- Puissance de matrices
- Systèmes linéaires et Inverses de matrices
- 12- Prépare tes écrits
- Espaces vectoriels et sous-espaces vectoriels
- Famille de vecteurs
- Somme d'espaces vectoriels
- Matrices applications linéaires
- Changement de base, matrices de passages
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Maths
Algèbre
MPSI/PCSI
Cubes consécutifs
Dans cet exercice, on démontre que la somme de 3 cubes consécutifs est toujours divisible par 9. Pour cela, on utilise les congruences pour simplifier les résultats. On veut montrer que la somme de 3 cubes consécutifs, soit n^3 + (n+1)^3 + (n+2)^3, est congru à 0 modulo 9.
En développant cette expression, on obtient 3n^3 + 9n^2 + 15n + 9. On regroupe les termes pour faciliter les calculs et remarquons que le premier terme est déjà divisible par 9.
En factorisant le deuxième terme par 3n et le troisième terme par 3, on obtient 9(n^2 + 1)(3n + 5).
Il est facile de voir que le terme 9(n^2 +1) est congru à 0 modulo 9 car il est divisible par 9. De plus, le terme 3n + 5 est congru à 0 modulo 3 car il est divisible par 3.
Ainsi, nous avons démontré que pour tout n, la somme de 3 cubes consécutifs est divisible par 9.
Maths
Algèbre
MPSI/PCSI
Congruences avec les puissances
Dans cet exercice, l'objectif est de trouver le reste de la division par 13 du nombre 100 puissance 1000. Pour cela, il est recommandé d'utiliser les congruences plutôt qu'une calculatrice en raison de la taille du nombre.
Tout d'abord, on détermine le reste de la division de 100 par 13, qui est 9. Ensuite, au lieu de travailler avec 100, on travaillera avec 9 car ils sont congruents modulo 13. Par exemple, si 100 puissance 4 est congru à 1 modulo 13, alors 9 puissance 4 sera aussi congru à 1 modulo 13.
On calcule donc les puissances de 9. On constate que 9 puissance 2 est congru à 3 modulo 13, mais ce n'est pas ce que l'on souhaite. On cherche à trouver une puissance de 9 qui est congru à 1 modulo 13, et on trouve que 9 puissance 3 est congru à 1 modulo 13. Donc la puissance recherchée est 3.
On réécrit alors 100 puissance 3 comme congru à 9 puissance 3, qui est congru à 1 modulo 13. Etant donné que 100 puissance 3 est congru à 1 modulo 13, le nouveau diviseur sera 3 cette fois-ci. On effectue donc une division euclidienne de 1000 par 3, ce qui donne 333 avec un reste de 1.
On réécrit alors 100 puissance 1000 comme 100 puissance 3 fois 333 plus 1, en utilisant les règles de calcul sur les puissances. Cela devient donc (100 puissance 3) puissance 333 multiplié par 100.
Il est important de ne pas se tromper en interprétant cela comme (100 puissance 333) puissance 3, car cela engendrerait une interprétation différente. Ici, on écrit cette expression de cette façon spécifique car on sait que 100 puissance 3 est congru à 1 modulo 13, et que 100 est congru à 9. Ainsi, on peut remplacer 100 par 9 dans l'expression.
En considérant que 1 puissance 333 est égal à 1 modulo 13, le calcul final donne que 1 puissance 333 fois 9 est congru à 9 modulo 13. Par conséquent, selon la définition des congruences, le reste de la division euclidienne de 100 puissance 1000 par 13 est égal à 9.
Maths
Algèbre
MPSI/PCSI
Division de puissances
Dans cet exercice, nous allons montrer que 13 divise 3^126 + 5^126 en utilisant les congruences. Au lieu de montrer que chaque terme est congru à 0 modulo 13, nous allons examiner à quoi chaque terme est congru modulo 13.
Pour cela, nous cherchons d'abord une puissance de 3 qui est congrue à 1 modulo 13. Nous trouvons que 3^3 ≡ 1 modulo 13. Ensuite, nous divisons 126 par 3 pour obtenir 42 sans reste. Ainsi, 3^126 = (3^3)^42 ≡ 1^42 ≡ 1 modulo 13.
De la même manière, nous cherchons une puissance de 5 qui convient. Nous trouvons que 5^3 ≡ 8 modulo 13. Ensuite, nous divisons 126 par 4 pour obtenir 31 avec un reste de 2. Ainsi, 5^126 = (5^4)^31 * 5^2 ≡ 1^31 * 12 ≡ 12 modulo 13.
Finalement, nous avons montré que 3^126 ≡ 1 modulo 13 et 5^126 ≡ 12 modulo 13. Donc, 3^126 + 5^126 ≡ 1 + 12 ≡ 0 modulo 13. Ainsi, nous concluons que 13 divise bien 3^126 + 5^126.
Maths
Algèbre
MPSI/PCSI
Equation type Fermat
Dans cet exercice, on doit résoudre une équation avec des coefficients entiers. On nous demande de montrer que si n, a et b sont des entiers tels que n est un multiple de 4 et que l'équation n = a² + b² est vérifiée, alors a et b doivent être pairs.
Pour prouver cela, on va utiliser une preuve par l'absurde. On suppose d'abord que a et b sont impairs. On peut alors écrire a comme 2k + 1 et b comme 2k' + 1, où k et k' sont des entiers. On développe ensuite l'équation a² + b² et on factorise par 4. On remarque que cela nous donne 4 fois un nombre entier plus 2. Cependant, cela implique que a² + b² est congru à 2 modulo 4, ce qui contredit le fait que n est un multiple de 4. Donc, l'hypothèse selon laquelle a et b sont impairs est fausse.
Ensuite, on suppose qu'un des deux nombres a ou b est impair. Nous pouvons supposer sans perte de généralité que c'est a qui est impair et que b est pair. En utilisant le même raisonnement, on arrive à la conclusion que a et b doivent tous les deux être pairs pour que n soit un multiple de 4.
En utilisant cette conclusion, on peut également montrer que l'équation 2^(2n) = a² + b² n'a pas de solution. En supposant qu'il existe une solution et en notant n0 le plus petit entier tel que 2^(2n0) = a² + b², on montre de manière contradictoire que cette équation n'a pas de solution en utilisant la minimalité de n0.
Enfin, on nous demande de démontrer que l'équation 2^(2n) + 1 = a² + b² a une unique solution. On montre d'abord qu'une solution est donnée par a = b = 2^n en décomposant 2^(2n) + 1 en 2 (2^n)^2. Ensuite, on utilise une preuve par récurrence pour montrer que c'est la seule solution. On suppose que cela est vrai pour un certain rang n et on montre que cela est aussi vrai pour n+1, en utilisant le fait que 2^(2n+3) est un multiple de 4 et en appliquant notre hypothèse de récurrence.
Ainsi, on peut conclure que l'équation 2^(2n) + 1 = a² + b² admet une unique solution donnée par a = b = 2^n.
Maths
Algèbre
MPSI/PCSI
Divisbilté par 7
Dans cet exercice, il s'agit de démontrer que pour tout nombre naturel n, l'expression 3 puissance 2n plus 1 plus 2 puissance 4n plus 2 est divisible par 7.
Pour cela, on utilise une méthode de récurrence. On commence par le cas initial, n=0. En substituant n par 0 dans l'expression, on obtient 3 puissance 1 plus 2 puissance 2, qui est égal à 7. Donc, dans ce cas, 7 divise bien l'expression.
Ensuite, on passe au cas de n à n+1. On veut montrer que l'expression 3 puissance 2n plus 3 plus 2 puissance 4n plus 6 est congruente à 0 modulo 7. Pour cela, on utilise les congruences. On factorise l'expression en extrayant 3 puissance 2 et 2 puissance 4 (car un 2 et un 4 sont sortis lors du passage de n à n+1). En utilisant les propriétés des congruences modulo 7, on peut simplifier l'expression et la réécrire comme 2 * (3 puissance 2n plus 1 plus 2 puissance 4n plus 2).
Or, on reconnaît que cette expression est congruente à 0 modulo 7, grâce à l'hypothèse de récurrence. En effet, on sait que pour tout n antinaturel, l'expression 3 puissance 2n plus 1 plus 2 puissance 4n plus 2 est divisible par 7. Donc, si cette expression est congruente à 0 modulo 7, l'expression 3 puissance 2n plus 3 plus 2 puissance 4n plus 6 l'est également.
Finalement, on a bien démontré que pour tout n, l'expression 3 puissance 2n plus 1 plus 2 puissance 4n plus 2 est divisible par 7.
Maths
Algèbre
MPSI/PCSI
Congurences simultanées
Dans cet exercice, nous devons résoudre des équations linéaires congruentes modulo m.
Dans la première partie, on nous demande de prouver qu'une équation de la forme nx congrue à a modulo m a une unique solution modulo m lorsque n et m sont premiers entre eux.
On utilise le théorème de Bézout qui nous dit que si m et n sont premiers entre eux, alors il existe une combinaison linéaire d'entiers u et v telle que mu plus nv est égal à 1.
On multiplie l'équation nx congrue à a modulo m par v de chaque côté pour se débarrasser de nv et obtenir x congrue à av modulo m.
Dans la deuxième partie, on considère deux équations modulo n et m respectivement, avec m et n premiers entre eux. On veut montrer qu'il existe une unique solution modulo nm.
On utilise à nouveau le théorème de Bézout pour trouver une combinaison linéaire d'entiers u et v telle que um plus nv est égal à 1.
En multipliant la deuxième équation par nv, on obtient une expression pour k, qui est égal à v fois b moins a modulo m. On remplace k dans la première équation pour obtenir une expression pour x.
La solution est donc de la forme x congrue à av modulo mn.
Ensuite, dans la troisième partie, on résout un problème pratique où deux signaux s'allument à des intervalles de temps différents.
On modélise ce problème par trois congruences modulo 15, 28 et 2 respectivement. On utilise le théorème de Bézout pour trouver une unique solution, qui est x congrue à 92 plus 420L modulo 420, où L est un entier arbitraire.
Finalement, dans la dernière partie, on résout un problème où on doit répartir un butin entre plusieurs personnes.
On modélise ce problème par trois congruences modulo 17, 11 et 6 respectivement. On utilise le théorème de Bézout pour trouver une solution particulière, qui est x congrue à 37 modulo 187.
En résolvant cette équation modulo 6, on trouve que l'ensemble des solutions est x congrue à 785 plus 1122L modulo 1122, où L est un entier arbitraire.