- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Arithmétique dans Z
- Structures Algébriques
- Calcul matriciel et systèmes
- Espaces Vectoriels
- Matrice 2ième Partie
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Arithmétique dans Z
- Structures Algébriques
- Calcul matriciel et systèmes
- Espaces Vectoriels
- Matrice 2ième Partie
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Equation type Fermat
Dans cet exercice, on doit résoudre une équation avec des coefficients entiers. On nous demande de montrer que si n, a et b sont des entiers tels que n est un multiple de 4 et que l'équation n = a² + b² est vérifiée, alors a et b doivent être pairs.
Pour prouver cela, on va utiliser une preuve par l'absurde. On suppose d'abord que a et b sont impairs. On peut alors écrire a comme 2k + 1 et b comme 2k' + 1, où k et k' sont des entiers. On développe ensuite l'équation a² + b² et on factorise par 4. On remarque que cela nous donne 4 fois un nombre entier plus 2. Cependant, cela implique que a² + b² est congru à 2 modulo 4, ce qui contredit le fait que n est un multiple de 4. Donc, l'hypothèse selon laquelle a et b sont impairs est fausse.
Ensuite, on suppose qu'un des deux nombres a ou b est impair. Nous pouvons supposer sans perte de généralité que c'est a qui est impair et que b est pair. En utilisant le même raisonnement, on arrive à la conclusion que a et b doivent tous les deux être pairs pour que n soit un multiple de 4.
En utilisant cette conclusion, on peut également montrer que l'équation 2^(2n) = a² + b² n'a pas de solution. En supposant qu'il existe une solution et en notant n0 le plus petit entier tel que 2^(2n0) = a² + b², on montre de manière contradictoire que cette équation n'a pas de solution en utilisant la minimalité de n0.
Enfin, on nous demande de démontrer que l'équation 2^(2n) + 1 = a² + b² a une unique solution. On montre d'abord qu'une solution est donnée par a = b = 2^n en décomposant 2^(2n) + 1 en 2 (2^n)^2. Ensuite, on utilise une preuve par récurrence pour montrer que c'est la seule solution. On suppose que cela est vrai pour un certain rang n et on montre que cela est aussi vrai pour n+1, en utilisant le fait que 2^(2n+3) est un multiple de 4 et en appliquant notre hypothèse de récurrence.
Ainsi, on peut conclure que l'équation 2^(2n) + 1 = a² + b² admet une unique solution donnée par a = b = 2^n.