Tous les sujets
Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Arithmétique dans Z
- Structures Algébriques
- Calcul matriciel et systèmes
- Espaces Vectoriels
- Matrice 2ième Partie
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSIPhysique-Chimie
Corrigés de BAC
Révisions Maths lycée
Prépa Examens
Tous les sujets
Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Arithmétique dans Z
- Structures Algébriques
- Calcul matriciel et systèmes
- Espaces Vectoriels
- Matrice 2ième Partie
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSIPhysique-Chimie
Corrigés de BAC
Révisions Maths lycée
Prépa Examens
Equation type Fermat
Dans cet exercice, on doit résoudre une équation avec des coefficients entiers. On nous demande de montrer que si n, a et b sont des entiers tels que n est un multiple de 4 et que l'équation n = a² + b² est vérifiée, alors a et b doivent être pairs.
Pour prouver cela, on va utiliser une preuve par l'absurde. On suppose d'abord que a et b sont impairs. On peut alors écrire a comme 2k + 1 et b comme 2k' + 1, où k et k' sont des entiers. On développe ensuite l'équation a² + b² et on factorise par 4. On remarque que cela nous donne 4 fois un nombre entier plus 2. Cependant, cela implique que a² + b² est congru à 2 modulo 4, ce qui contredit le fait que n est un multiple de 4. Donc, l'hypothèse selon laquelle a et b sont impairs est fausse.
Ensuite, on suppose qu'un des deux nombres a ou b est impair. Nous pouvons supposer sans perte de généralité que c'est a qui est impair et que b est pair. En utilisant le même raisonnement, on arrive à la conclusion que a et b doivent tous les deux être pairs pour que n soit un multiple de 4.
En utilisant cette conclusion, on peut également montrer que l'équation 2^(2n) = a² + b² n'a pas de solution. En supposant qu'il existe une solution et en notant n0 le plus petit entier tel que 2^(2n0) = a² + b², on montre de manière contradictoire que cette équation n'a pas de solution en utilisant la minimalité de n0.
Enfin, on nous demande de démontrer que l'équation 2^(2n) + 1 = a² + b² a une unique solution. On montre d'abord qu'une solution est donnée par a = b = 2^n en décomposant 2^(2n) + 1 en 2 (2^n)^2. Ensuite, on utilise une preuve par récurrence pour montrer que c'est la seule solution. On suppose que cela est vrai pour un certain rang n et on montre que cela est aussi vrai pour n+1, en utilisant le fait que 2^(2n+3) est un multiple de 4 et en appliquant notre hypothèse de récurrence.
Ainsi, on peut conclure que l'équation 2^(2n) + 1 = a² + b² admet une unique solution donnée par a = b = 2^n.