- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Terminale
Première
Seconde
MPSI/PCSI
2BAC SM Maroc
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Maths Spé
Probabilités
Terminale
Somme de VA : Bernoulli
Dans cet exercice, nous avons 300 variables aléatoires indépendantes suivant une loi de Bernoulli de paramètre p égal à 0,23. La question est de déterminer la loi de la variable aléatoire x, qui est la somme de ces 300 variables aléatoires.
Pour comprendre cela, nous faisons deux rappels. D'abord, un schéma de Bernoulli est la répétition de n épreuves de Bernoulli identiques et indépendantes. Ensuite, nous rappelons qu'une loi binomiale de paramètre np donne le nombre de succès sur n répétitions.
Dans notre cas, x est la somme des 300 variables aléatoires indépendantes suivant une loi de Bernoulli de paramètre p égal à 0,23. En sommant ces variables, nous comptons le nombre de succès sur les 300 répétitions. Donc, x suit une loi binomiale de paramètre n égal à 300 et p égal à 0,23.
De plus, nous rappelons que l'espérance d'une variable aléatoire suivant une loi binomiale est égale à n fois p. Dans notre cas, n est égal à 300 et p est égal à 0,23, donc l'espérance de x est égale à 69.
Maths Spé
Probabilités
Terminale
Somme de VA de même loi
Dans cette vidéo, nous abordons un exercice de probabilité portant sur la somme de variables aléatoires indépendantes. Plus précisément, l'exercice consiste à tourner une roue de loterie comportant cinq secteurs angulaires égaux plusieurs fois. Chaque secteur a une valeur de points attribuée, soit 300 points pour les deux premiers secteurs, 100 points pour le troisième secteur et moins 400 points pour les deux derniers secteurs.
Nous devons décomposer la variable aléatoire Z, représentant le gain algébrique en points à la fin du jeu, en une somme de variables aléatoires identiques et indépendantes. Ensuite, il nous est demandé de calculer l'espérance de Z, c'est-à-dire la moyenne des gains.
En procédant à cette décomposition, nous identifions que Z est égal à x1 + x2 + x3 + x4, où x1 représente le gain algébrique au premier lancé de roue. Nous déduisons également que les x1 suivent une certaine loi : x1 est égal à 300 avec une probabilité de 0,4, à 100 avec une probabilité de 0,2 et à moins 400 avec une probabilité de 0,4.
Pour calculer l'espérance de Z, nous pouvons utiliser la propriété d'additivité de l'espérance. Ainsi, nous obtenons l'espérance de Z en additionnant l'espérance de chaque x1, x2, x3 et x4. Comme les variables aléatoires suivent la même loi, nous multiplions l'espérance de x1 par 4.
En substituant les valeurs correspondantes, nous trouvons que l'espérance de Z est égale à 4 fois moins 20, ce qui donne moins 80. En d'autres termes, en moyenne, les joueurs perdront 80 euros ou 80 points en jouant à ce jeu.
Maths Spé
Probabilités
Terminale
Modéliser par une somme (1)
Dans cette vidéo, Corentin présente un exercice portant sur les variables aléatoires et la modélisation probabiliste d'événements. L'exercice consiste à lancer un dé tétraédrique équilibré dont les faces sont numérotées de 1 à 4, ainsi qu'un dé cubique équilibré dont les faces sont numérotées de 1 à 6. L'objectif est d'étudier la somme des résultats des deux dés (D2D) et de proposer deux variables aléatoires x et y qui permettent de modéliser la situation.
Corentin suggère de réfléchir à cette situation de manière logique, en pensant comme un programme informatique. Il explique que x représente le résultat obtenu avec le dé tétraédrique et y représente le résultat obtenu avec le dé cubique. Ainsi, la somme x + y représente la somme des résultats des deux dés.
Il propose ensuite un bonus, qui est de calculer l'espérance de x + y. L'espérance de x + y est égale à l'espérance de x + l'espérance de y. En considérant que les résultats des deux dés sont équiprobables, Corentin effectue les calculs nécessaires et trouve que l'espérance est égale à 6. Il interprète alors cela comme signifiant qu'en moyenne, le participant à ce jeu obtient un score de 6.
En résumé, l'exercice consiste à modéliser la somme des résultats de deux dés en utilisant les variables aléatoires x et y, et à calculer l'espérance de cette somme, qui s'avère être égale à 6.
Maths Spé
Probabilités
Terminale
Modéliser par une somme (2)
Dans cette vidéo, nous étudions la notion de somme de variables aléatoires en utilisant un exercice pratique. Elia s'entraîne au jet de 7 mètres et fait 30 tirs le matin et 50 l'après-midi. Elle a une probabilité de marquer de 0,46 le matin et de 0,78 l'après-midi. Les tirs sont supposés indépendants.
Nous devons tout d'abord déterminer la loi suivie par la variable aléatoire x, qui représente le nombre de tirs réussis par Elia le matin, et la loi suivie par y, qui représente le nombre de tirs réussis par Elia l'après-midi.
En analysant la situation, nous remarquons que cela correspond à une expérience de Bernoulli, où réussir le tir est considéré comme un succès et rater le tir comme un échec. Nous devons donc comptabiliser le nombre de succès, c'est-à-dire le nombre de fois qu'Elia réussit son tir.
Étant donné l'indépendance des tirs, nous concluons que x suit une loi binomiale avec les paramètres 30 et 0,46, où 30 représente le nombre de tirs et 0,46 la probabilité de réussir le tir le matin. De la même manière, y suit une loi binomiale avec les paramètres 50 et 0,78, où 50 représente le nombre de tirs et 0,78 la probabilité de réussir le tir l'après-midi.
Ensuite, nous devons comprendre ce que représente la somme des variables aléatoires x et y, c'est-à-dire x + y. Il s'agit du nombre total de tirs réussis pendant la journée.
Enfin, nous devons calculer l'espérance de x + y. Nous savons que l'espérance d'une variable aléatoire binomiale est égale à n fois p, où n est le nombre de tirs et p est la probabilité de réussir le tir. Nous calculons donc l'espérance de x, qui est égale à 30 fois 0,46, et l'espérance de y, qui est égale à 50 fois 0,78. En fin de compte, nous trouvons que l'espérance de x + y est égale à 45. Cela signifie qu'Elia peut espérer réussir 45 tirs au cours de la journée.