logo
  • Filtre for math subject All subjects
  • Filtre for math subject All subjects

Majoration astucieuse

Le cours présente une méthode classique pour étudier les variations d'une suite et démontrer sa convergence. La suite en question est Vn = 6n + 3 / (n + 1). Pour déterminer les variations de la suite, on utilise le critère de croissance en comparant le ratio Vn+1/Vn à 1. On montre que ce ratio est supérieur à 1, ce qui signifie que la suite est strictement croissante. Ensuite, on démontre que la suite est majorée par 6 en montrant que Vn < 6 pour tout n. Enfin, on applique le théorème de convergence monotone pour conclure que la suite converge. On peut également utiliser une deuxième méthode pour étudier la suite en travaillant sur son expression. En utilisant des techniques de simplification, on obtient une expression équivalente de la suite et on montre ainsi qu'elle est croissante et bornée par 6. En utilisant les propriétés des limites, on conclut que la limite de la suite Vn est égale à 6.

RELATED