- All subjects
- All subjects
Déf fondamentale
Le cours traite du logarithme et de ses propriétés. La fonction logarithme, notée ln, est définie sur l'ensemble des réels strictement positifs. Elle associe à chaque nombre réel positif x, l'unique solution de l'équation exponentielle E^(2y) = x. On utilise le symbole "log" pour indiquer la solution à l'équation E^(2y) = x, ce qui revient à écrire log(x) = y. L'exponentielle de log(x) est toujours égale à x, et réciproquement, le logarithme de l'exponentielle de x est égal à x. Il existe quelques valeurs particulières, tels que log(1) = 0, log(e) = 1 et log(1/e) = -1. Il faut faire attention à ne pas confondre la racine carrée de x², qui donne la valeur absolue de x, avec le logarithme de x, qui est défini uniquement pour les x positifs. La prochaine vidéo abordera d'autres notions liées au logarithme.