- All subjects
- All subjects
Anneaux, éléments nilpotents
Dans cette vidéo, Corentin aborde le concept de morphismes d'anneaux et démontre deux résultats. Tout d'abord, il montre que si K et L sont deux corps et F est un morphisme d'anneaux de K dans L, alors pour tout X appartenant à K privé de 0, F de X est inversible. Il explique ensuite comment déterminer l'inverse de F de X. Ensuite, Corentin souhaite montrer que tout morphisme de corps est injectif. Il rappelle une propriété selon laquelle un morphisme de corps est injectif si son noyau est réduit à 0. Il démontre alors que si F de X est égal à 0, alors X est égal à 0, ce qui montre que le noyau de F est réduit à 0 et donc que F est injectif.