logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes

Croissance Comparée

Dans ce cours, nous étudions la fonction f(x) = 3-x + 2ln(2x). Nous commençons par dériver cette fonction pour trouver son signe. La dérivée f'(x) = -1 + 2x nous permet de déterminer que la fonction est positive pour x > 1 et négative pour x < 1. Pour x > 0, la dérivée est également positive jusqu'à x = 2, ensuite elle devient négative. Ainsi, nous pouvons conclure que f(x) est croissante sur l'intervalle (0, 2) et décroissante sur l'intervalle (2, +∞). Ensuite, nous calculons également f(2) pour avoir une vue d'ensemble de la variation de f. Nous obtenons f(2) = 1 + 2ln(2). Pour étudier plus en détail la variation de f, nous analysons les limites de la fonction. Lorsque x tend vers +∞, nous factorisons par le terme prédominant - x, ce qui nous permet de simplifier l'expression et de conclure que la limite est égale à 0. De même, lorsque x tend vers 0, nous arrivons à la conclusion que la limite est également égale à 0. Ainsi, le tableau de variation complet de f est établi. Enfin, nous étudions la convexité de f en calculant la dérivée seconde f''(x) = -1/x^2. En résolvant cette équation, nous trouvons que f''(x) = 0 pour x ≠ 0. Cela signifie que f est concave sur l'ensemble de son domaine de définition, c'est-à-dire R étoile plus. En résumé, la fonction f(x) = 3-x + 2ln(2x) est croissante sur (0,2) et décroissante sur (2, +∞). Elle a un maximum en 2 et est concave sur R étoile plus tout entier.

Contenu lié