- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Analyse Terminale
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives&Équations Différentielles
- Calcul Intégral
- Géométrie Terminale
- Probas Terminale
- Arithmétique Maths expertes
- Complexes Maths expertes
MPSI/PCSI
- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Analyse Terminale
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives&Équations Différentielles
- Calcul Intégral
- Géométrie Terminale
- Probas Terminale
- Arithmétique Maths expertes
- Complexes Maths expertes
MPSI/PCSI
Équation y'=ay+b
Aujourd'hui, nous allons voir comment résoudre des équations différentielles d'ordre 1 avec un second membre, c'est-à-dire des équations de la forme y' = y + b, où b est une constante donnée.
La méthode est assez simple. Tout d'abord, nous cherchons une solution particulière constante. Ensuite, nous résolvons l'équation homogène, y' = y. En ajoutant ces deux solutions, nous obtenons la solution générale de l'équation.
Prenons un exemple : y' = -y + 3. Dans cet exemple, nous résolvons d'abord l'équation homogène y' = -y, ce qui nous donne les solutions de la forme y(x) = ae^(-x), où a est une constante réelle.
Ensuite, nous cherchons une solution particulière constante qui satisfait l'équation y' = -y + 3. En trouvant que phi(x) = 3 est une solution, nous ajoutons cette solution à la solution homogène.
Ainsi, toutes les solutions de cette équation différentielle sont de la forme y(x) = e^(-x) + 3a, où a est une constante. Pour trouver la valeur de a, on peut utiliser une condition particulière, par exemple y(alpha) = beta.
C'est ainsi que l'on résout une équation différentielle du type y' = y + b. N'hésitez pas à poser vos questions dans la description.