logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes
  • Filtre for math subjectPrépa Examens

Second membre en exponentielle

Les équations différentielles sont importantes dans les études d'ingénieur. Pour une équation du premier ordre du type Y' + Ay = Phi(X), la solution se divise en deux parties. La première partie est la solution sans second membre, qui est généralement l'exponentielle de -AX. La deuxième partie est la solution particulière, qui dépend de la nature de Phi(X). Par exemple, si Phi(X) est une fonction X^2, la solution sera une fonction en X^2. Si Phi(X) est exponentielle 8X, la solution particulière sera de la forme K * exponentielle 8X. Si Phi(X) est une somme de termes, on peut séparer la solution en plusieurs problèmes. Par exemple, si on a X^2 + log(X), on peut trouver une solution sans second membre pour X^2 et une solution sans second membre pour log(X). En résumé, pour résoudre une équation différentielle du premier ordre, on cherche d'abord une solution sans second membre et une solution particulière en fonction de la nature de Phi(X). Ensuite, on peut combiner ces solutions pour obtenir l'ensemble des solutions possibles.

Contenu lié