- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Analyse Terminale
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives&Équations Différentielles
- Calcul Intégral
- Géométrie Terminale
- Probas Terminale
- Arithmétique Maths expertes
- Complexes Maths expertes
MPSI/PCSI
- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Analyse Terminale
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives&Équations Différentielles
- Calcul Intégral
- Géométrie Terminale
- Probas Terminale
- Arithmétique Maths expertes
- Complexes Maths expertes
MPSI/PCSI
Introduction
Ce cours est une introduction au nouveau sous-chapitre sur les intégrales, les applications et calculs. Le premier point abordé est l'utilisation des méthodes d'intégration pour calculer des primitives plus complexes, telles que l'intégration par parties. Ensuite, il est possible de calculer des aires entre des courbes en utilisant le lien établi entre les aires et les primitives dans le sous-chapitre précédent. De plus, la définition de la valeur moyenne d'une fonction est présentée, avec différentes méthodes associées. En résumé, ce cours aborde le calcul des aires sous une courbe, entre deux courbes, la valeur moyenne d'une fonction, ainsi que les méthodes d'intégration par parties. La partie la plus intéressante est l'accumulation d'exercices et de méthodes plus difficiles pour explorer les limites des calculs d'intégration par parties et d'aires. Bon courage pour cette partie et n'hésitez pas à consulter la FAQ en cas de questions ou de doutes. À bientôt pour la prochaine vidéo.