- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Analyse Terminale
- Géométrie Terminale
- Probas Terminale
- Arithmétique Maths expertes
- Divisibilité et Congruences
- PGCD
- Théorèmes de Bézout et de Gauss
- Nombres Premiers
- Complexes Maths expertes
MPSI/PCSI
- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Analyse Terminale
- Géométrie Terminale
- Probas Terminale
- Arithmétique Maths expertes
- Divisibilité et Congruences
- PGCD
- Théorèmes de Bézout et de Gauss
- Nombres Premiers
- Complexes Maths expertes
MPSI/PCSI
Autre dépendance en n
Dans cet exercice, nous devons déterminer le PGCD de deux entiers, a et b, en fonction de la valeur de n. Pour simplifier le calcul, nous souhaitons éliminer la variable n et nous concentrer uniquement sur le PGCD. Nous utilisons donc une combinaison linéaire de a et b pour éliminer n, ce qui nous donne l'équation 3a-b. Comme le PGCD de a et b divise cette combinaison linéaire, il divise également le nombre 5. Étant donné que 5 est un nombre premier, cela signifie que le PGCD ne peut être que 1 ou 5.
Nous examinons ensuite ces deux cas séparément pour déterminer les valeurs possibles de n. Si le PGCD est égal à 5, cela signifie que a est divisible par 5 (congru à 0 modulo 5). En utilisant l'expression de a (n+4), nous constatons que n doit être congru à 1 modulo 5 pour satisfaire cette condition.
D'autre part, si le PGCD est égal à 1, cela signifie que n n'est pas congru à 1 modulo 5.
En conclusion, le PGCD de a et b est égal à 5 si et seulement si n est congru à 1 modulo 5, et il est égal à 1 si et seulement si n n'est pas congru à 1 modulo 5.