- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Avec une Somme
Ce cours traite d'une démonstration mathématique. L'objectif est de montrer que pour tout entier n, la somme des carrés des nombres impairs jusqu'à n est égale à la formule 2n + 3. Le cours commence par expliquer l'importance d'écrire clairement ce que l'on veut démontrer. Ensuite, l'auteur utilise des notations mathématiques pour étayer sa démonstration par récurrence. Il commence par l'initialisation, en montrant que l'égalité est vérifiée pour n = 1. Ensuite, il passe à l'hérédité, en supposant que l'égalité est vraie pour n, puis en démontrant qu'elle est également vraie pour n+1. Pour cela, il factorise certaines expressions et effectue des calculs, en utilisant la formule de la somme des impairs. En fin de compte, il conclut en montrant que l'égalité est vérifiée pour tout entier n.