logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Introduction Limites

Lorsqu'on étudie les limites de fonctions, on peut s'inspirer de ce qu'on a vu sur les suites. Les suites sont des fonctions qui portent uniquement sur les entiers, tandis que les fonctions sont plus génériques et se portent sur l'ensemble des réels. Ainsi, on peut parler de limites en l'infini et en un réel. Il y a aussi des cas où il n'y a pas de limite, par exemple lorsque la fonction oscille à l'infini. Dans le cas où la limite existe, la fonction peut se rapprocher d'une valeur réelle ou tendre vers plus ou moins l'infini. On peut illustrer ces cas avec des graphes. Dans cette vidéo d'introduction, nous aborderons ces différents cas et introduirons la notion d'asymptote. En résumé, il faut connaître les définitions et les exemples de limites, ainsi que les méthodes d'analyse graphique et de calcul des limites. N'hésitez pas à poser des questions et interagir avec les autres membres dans la FAQ.

Contenu lié