logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Démo au programme : convexité et f''

Dans ce cours, on étudie les propriétés graphiques d'une fonction et leur lien avec sa dérivée seconde. Si f'' (la dérivée seconde de f) est positive sur l'intervalle i, alors la courbe représentative de f est au-dessus de ses tangentes. Cela rappelle la définition de la convexité, où la courbe est au-dessus de ses cordes. La démonstration de ce fait commence par une introduction, qui indique les hypothèses de départ et ce qu'on veut montrer. Ensuite, on met tout du même côté pour simplifier l'expression, puis on pose une fonction qui compare la courbe et la tangente au point a. On étudie cette fonction, en montrant qu'elle est dérivable et en cherchant le signe de sa dérivée. Puis, on utilise le fait que la dérivée seconde est positive pour conclure que la dérivée est croissante. Enfin, on fait un tableau de variation de la fonction pour montrer qu'elle est toujours positive ou nulle. Cela prouve que la courbe est au-dessus de la tangente. Pour bien comprendre cette démonstration, il est important de reprendre chaque étape et de savoir les réécrire sans aide. Cela permet de maîtriser parfaitement le sujet.

Contenu lié