logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

Points d'Inflexion

Ce cours porte sur la convexité d'une fonction et la façon de déterminer les points d'inflexion. La fonction étudiée est f2x. Nous commençons par dériver cette fonction deux fois pour justifier sa dérivabilité. En calculant la dérivée, nous remarquons la présence d'une exponentielle toujours positive. Cependant, le signe de "-x plus 1" est important. Il est positif lorsque x tend vers moins l'infini jusqu'à 1, et négatif sinon. En déduisant le signe de la dérivée, nous obtenons un tableau de variation de la fonction f. Celle-ci est croissante puis décroissante avec un maximum atteint à 1, évalué à 7e moins 1. Les limites de la fonction sont également calculées, avec -∞ tendant vers 0 et +∞ tendant également vers 0 grâce à une comparaison de croissance. Ensuite, nous calculons la dérivée seconde de f(x) et trouvons 7 fois x moins 2 fois e de moins x. Comme l'exponentielle est toujours positive, le signe de f''(x) suit celui de x moins 2, positif pour x supérieur à 2 et négatif sinon. Ainsi, f''(x) change de signe en x=2, ce qui indique un point d'inflexion à ce point. Les coordonnées de ce point sont calculées et correspondent à f de 2 égal à 14 de 2 moins 2. En regardant la courbe de f, on observe que la pente diminue avant le point d'inflexion et augmente après, créant une courbe incurvée. La courbe de f'' est également tracée et montre que la dérivée seconde est d'abord négative avant de changer de signe en 2. Les points d'inflexion sont souvent rencontrés dans des problèmes de physique, tels que les titrages, où ils indiquent un changement de pente. Cette méthode sur la convexité et les points d'inflexion constitue la dernière partie de ces différentes méthodes étudiées.

Contenu lié