logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Primitives : condition initiale

Dans cet exercice, nous devons vérifier si la fonction proposée, F(x) = x³ + ln(x), est bien une primitive de la fonction f(x) = 3x² + 1/x. Pour cela, nous allons dériver F(x) pour voir si nous obtenons f(x). En dérivant F(x), nous obtenons 3x² + 1/x, ce qui est bien égal à f(x). Donc F(x) est une primitive de f(x). Cependant, il est important de noter qu'il existe une infinité de primitives de f(x) qui diffèrent par une constante additive. Ainsi, l'ensemble des primitives de f(x) est de la forme F(x) + K, où K est une constante réelle. Ensuite, nous devons déterminer l'unique primitive de f(x) qui s'annule en un certain point E. Pour cela, nous évaluons F(E) + K et cherchons la valeur de K qui rend cette expression égale à zéro. En calculant F(E), nous obtenons E³ + 1 + K. En résolvant l'équation E³ + 1 + K = 0, nous trouvons que K = -1 - E³. Ainsi, la primitive de f(x) qui s'annule en E est F(x) + K = ln(x) + x³ - 1 - E³. Cet exercice introduit la notion de primitives et montre leur utilité pour la résolution des équations différentielles. N'hésitez pas à poser vos questions dans la FAQ si besoin.

Contenu lié