- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Composition et Primitives
Dans ce cours, nous apprenons à repérer des primitifs de fonctions composées. Certaines formes reviennent souvent et il est important de les reconnaître. Par exemple, lorsque nous avons U' sur la racine de U, la primitive sera deux racines de U. Si nous avons cos U fois quelque chose, et que c'est U' devant, la primitive est sin U. De la même manière, si nous avons U' fois sin U, la primitive est moins cos U. Lorsqu'il y a une exponentielle, la primitive est E2U. Si nous avons un coefficient U' sur U, la primitive est ln U. Lorsque nous avons U' fois U puissance n, la primitive est U puissance n plus 1 sur n plus 1. Pour vérifier si notre proposition de primitive est correcte, nous pouvons dériver et voir si nous obtenons la bonne fonction. Si nous avons U' sur U puissance n, la primitive est moins 1 sur n-1 fois 1 sur U puissance n-1.
Il est également important de connaître les dérivées des primitifs inverses, comme U' de racine de U.
Nous pouvons également utiliser des constantes multiplicatives lorsque cela est nécessaire pour trouver la bonne valeur de notre primitive.
En pratique, pour trouver les primitives d'une fonction donnée, nous devons repérer la forme de base et ajuster si nécessaire. Par exemple, si nous avons une exponentielle de U, nous pouvons introduire un coefficient multiplicatif à l'intérieur de la fonction pour correspondre à la dérivée. Ensuite, nous pouvons déterminer la forme générale des primitives, en ajoutant une constante.
En conclusion, il est important de reconnaître les formes courantes des primitifs de fonctions composées et de savoir comment ajuster si nécessaire.