logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

Décomposition en éléments simples

Dans ce cours, nous apprenons à simplifier les fractions rationnelles en séparant les monômes, c'est-à-dire les polynômes du degré 1. Il existe deux méthodes pour y parvenir : la première consiste à mettre tous les termes au même dénominateur et à résoudre un système d'équations, tandis que la seconde méthode est plus rapide. La deuxième méthode consiste à prendre en compte trois pôles (x, x+1, x-1) et à utiliser cette expression pour isoler les constantes a, b et c. Ensuite, nous déterminons les primitives de cette fonction et ajoutons une constante k. Enfin, nous déterminons les limites en l'infini et en 1 de ces primitives. Pour cela, nous utilisons les propriétés du logarithme. Au final, nous obtenons une fonction qui tend vers 0 lorsque x tend vers l'infini, et nous pouvons simplifier cette fonction en utilisant les propriétés du logarithme.

Contenu lié