logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Équation y'=ay+b

Aujourd'hui, nous allons nous intéresser à la résolution des équations différentielles du premier ordre avec un second membre, c'est-à-dire les équations de la forme y' = y + b. La méthode est assez simple : nous commençons par chercher une solution constante, que nous appelons la solution particulière. Ensuite, nous résolvons l'équation homogène, qui est y' = y. Enfin, nous combinons ces deux solutions pour obtenir la solution générale. Prenons l'exemple de l'équation y' = -y + 3, où a = -1 et b = 3. Nous résolvons d'abord l'équation homogène y' = -y, dont les solutions sont de la forme y(x) = ae^(-x), où a est une constante réelle. Ensuite, nous recherchons une solution particulière constante, en supposant que sa dérivée est nulle. En injectant cette solution dans l'équation, nous trouvons que phi = 3. Enfin, nous combinons ces deux solutions pour obtenir la forme générale de la solution y(x) = e^(-x) + 3a, où a est une constante multiplicative inconnue. Il est important de noter qu'il y a toujours une constante multiplicative dans la solution générale. Parfois, pour déterminer sa valeur, nous avons besoin d'une condition particulière, par exemple y(alpha) = beta. Dans ce cas, il y aura une unique solution qui vérifiera cette condition particulière. Voilà comment résoudre une équation différentielle du premier ordre de la forme y' = y + b. N'hésitez pas à poser vos questions dans la description.

Contenu lié