logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Reste de 5³ⁿ - 6ⁿ par 17 ?

Dans cet exercice, nous devons trouver le reste de la division Euclidienne de 5 puissance 3n moins 6 puissance n par 17. Pour résoudre cela, nous pourrions créer une table de congruence pour 5 et une autre pour 6 pour comprendre quand ils sont congruents à quelque chose modulo 17. Cependant, il est important de prendre du recul et d'analyser séparément les deux parties de la différence pour voir s'il y a quelque chose de plus simple. Dans ce cas, nous pouvons simplifier 5 puissance 3n en utilisant la propriété selon laquelle si A est congruent à B, alors A puissance M est congruent à B puissance M. Ainsi, nous pouvons simplifier 5 puissance 3n en enlevant des paquets de 17. Par exemple, nous pouvons enlever 102 (17 x 6) de 125. Ensuite, nous pouvons enlever encore 17 pour obtenir 6. Donc, nous avons 5 puissance 3n congruent à 6 modulo 17. En soustrayant les deux parties de l'équation, nous obtenons que 5 puissance 3n moins 6 puissance n est congruent à 0 modulo 17. Cela signifie que 17 divise toujours cette expression. Ainsi, la réponse à la question est que le reste de la division Euclidienne de 5 puissance 3n moins 6 puissance n par 17 est toujours 0.

Contenu lié