logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

Autre dépendance en n

Dans cet exercice, nous devons déterminer le PGCD (Plus Grand Commun Diviseur) de deux entiers, a et b, qui dépendent de n. Les valeurs de a et b sont respectivement n + 4 et 3n + 7. Pour résoudre ce problème, nous commençons par noter D comme le PGCD de a et b. Nous souhaitons nous débarrasser de la variable n pour nous concentrer uniquement sur le PGCD. Ainsi, nous utilisons une combinaison linéaire de a et b pour éliminer n. Étant donné que D divise a et b, il doit également diviser toute combinaison linéaire entière de ces deux nombres. Par conséquent, D divise également 3a - b. En simplifiant cette expression, nous obtenons 3a - b = 5 (après avoir supprimé la variable n). Cette information est précieuse, car si D divise 5 et que 5 est un nombre premier, alors D ne peut être que 1 ou 5. Nous examinons donc deux situations possibles : - Si D est égal à 5, cela signifie que a est congru à 0 modulo 5 (c'est-à-dire que a est un multiple de 5). Étant donné que a est n + 4, cela implique que n est congru à 1 modulo 5. - Si D est égal à 1, cela signifie que n n'est pas congru à 1 modulo 5. Finalement, le PGCD de a et b est égal à 5 si et seulement si n est congru à 1 modulo 5, et il est égal à 1 si et seulement si n n'est pas congru à 1 modulo 5.

Contenu lié