- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Utiliser Fermat 2/2
Le petit théorème de Fermat est utilisé pour montrer que pour tout nombre premier P et nombre entier A qui n'est pas divisé par P, A puissance P moins 1 est divisible par P. Dans le premier exercice, on montre que 4 puissance 28 moins 1 est divisible par 29 en appliquant le petit théorème de Fermat.
Dans le deuxième exercice, on montre que pour tout n, 4 puissance n moins 1 est divisible par 3 en utilisant les congruences et en remarquant que 4 est congru à 1 modulo 3.
Dans le troisième exercice, on montre que pour tout k, 4 puissance 4k moins 1 est divisible par 5 et par 17, en utilisant les congruences et en remarquant que 4 puissance 4 est congru à 1 modulo 5 et modulo 17.
Enfin, dans la dernière question, on déduit que 4 puissance 28 moins 1 a quatre diviseurs premiers, à savoir 3, 5, 17 et 29, en utilisant les résultats précédents.