logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

Congruence : équation degré 2

Dans cet exercice, nous devons résoudre l'équation x²-2x+2≡0 (mod 17) en utilisant l'équation du second degré en congruence. Tout d'abord, nous devons montrer que α=5 est une solution de l'équation E. En remplaçant x par 5, nous obtenons 25-10+2=17, qui est congruent à 0 modulo 17. Donc, α est bien une solution de E. Ensuite, nous posons x̄=x-α pour trouver toutes les solutions de E. En remplaçant x par x̄+α dans l'équation E, nous obtenons (x̄+α)²-2(x̄+α)+2≡0 (mod 17). En développant l'équation, nous obtenons x̄²+8x̄≡0 (mod 17). Nous factorisons l'équation en utilisant la congruence à 0 modulo 17, ce qui nous donne x̄(x̄+8)≡0 (mod 17). Selon le lemme de Gauss, puisque 17 est premier et qu'il divise le produit, il divise soit x̄ soit (x̄+8). Nous avons donc deux possibilités à étudier : 1) Si 17 divise x̄, cela signifie que x≡5 (mod 17). 2) Si 17 divise (x̄+8), cela signifie que x≡14 (mod 17). Ainsi, toutes les solutions de E sont x≡5 (mod 17) ou x≡14 (mod 17).

Contenu lié