- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Congruence : équation degré 2
Dans cet exercice, nous devons résoudre l'équation x²-2x+2≡0 (mod 17) en utilisant l'équation du second degré en congruence. Tout d'abord, nous devons montrer que α=5 est une solution de l'équation E. En remplaçant x par 5, nous obtenons 25-10+2=17, qui est congruent à 0 modulo 17. Donc, α est bien une solution de E.
Ensuite, nous posons x̄=x-α pour trouver toutes les solutions de E. En remplaçant x par x̄+α dans l'équation E, nous obtenons (x̄+α)²-2(x̄+α)+2≡0 (mod 17). En développant l'équation, nous obtenons x̄²+8x̄≡0 (mod 17).
Nous factorisons l'équation en utilisant la congruence à 0 modulo 17, ce qui nous donne x̄(x̄+8)≡0 (mod 17). Selon le lemme de Gauss, puisque 17 est premier et qu'il divise le produit, il divise soit x̄ soit (x̄+8). Nous avons donc deux possibilités à étudier :
1) Si 17 divise x̄, cela signifie que x≡5 (mod 17).
2) Si 17 divise (x̄+8), cela signifie que x≡14 (mod 17).
Ainsi, toutes les solutions de E sont x≡5 (mod 17) ou x≡14 (mod 17).